Механическая работа мощность кпд. Формула, определение. Теоретическая механика: Работа и мощность. Коэффициент полезного действия

В электрической или электронной схеме есть два типа элементов: пассивные и активные. Активный элемент способен непрерывно подавать энергию в цепь – аккумулятор, генератор. Пассивные элементы – резисторы, конденсаторы, катушки индуктивности, только потребляют энергию.

Что такое источник тока

Источник тока – это устройство, непрерывно питающее цепь электроэнергией. Он может быть источником постоянного тока и переменного. Аккумуляторные батареи – это источники постоянного тока, а электророзетка – переменного.

Одна из интереснейших характеристик питающих источников они способны преобразовывать неэлектрическую энергию в электрическую, например:

  • химическую в батареях;
  • механическую в генераторах;
  • солнечную и т. д.

Электрические источники делятся на:

  1. Независимые;
  2. Зависимые (контролируемые), выход которых зависит от напряжения или тока в другом месте схемы, который может быть либо постоянным, либо меняющимся во времени. Используются в качестве эквивалентных ИП для электронных устройств.

Когда говорят о законах цепи и анализе, электрические ИП часто рассматриваются как идеальные, то есть теоретически способные обеспечить бесконечное количество энергии без потерь, имея при этом характеристики, представленные прямой линией. Однако в реальных, или практических, источниках всегда есть внутреннее сопротивление, влияющее на их выход.

Важно! ИП могут быть соединены параллельно, только если имеют одинаковое значение напряжения. Последовательное соединение будет влиять на выходной показатель напряжения.

Внутреннее сопротивление ИП представляется как последовательно соединенное со схемой.

Мощность источника тока и внутреннее сопротивление

Пусть рассматривается простая схема, в которой аккумулятор имеет ЭДС Е и внутреннее сопротивление r и подает ток I на внешний резистор сопротивлением R. Внешний резистор может быть любой активной нагрузкой. Основной целью схемы является передача энергии от батареи к нагрузке, где она делает что-то полезное, например, идет на освещение помещения.

Можно вывести зависимость полезной мощности от сопротивления:

  1. Эквивалентное сопротивление схемы – R + r (так как сопротивление нагрузки включено последовательно с внешней нагрузкой);
  2. Ток, протекающий в цепи, будет определяться выражением:
  1. Выходная мощность ЭДС:

Рвых. = E x I = E²/(R + r);

  1. Мощность, рассеиваемая как тепло, при внутреннем сопротивлении батареи:

Pr = I² x r = E² x r/(R + r)²;

  1. Мощность, передаваемая нагрузке:

P(R) = I² x R = E² x R/(R + r)²;

  1. Рвых. = Рr + P(R).

Таким образом, часть выходной энергии батареи сразу теряется из-за рассеивания тепла на внутреннем сопротивлении.

Теперь можно построить график зависимости P(R) от R и выяснить, при какой нагрузке полезная мощность примет максимальное значение. При анализе функции на экстремум выясняется, что при увеличении R будет монотонно возрастать и P(R) до того пункта, когда R не сравняется с r. В этой точке полезная мощность будет максимальной, а затем начинает монотонно уменьшаться при дальнейшем увеличении R.

P(R)max = E²/4r, когда R = r. При этом I = E/2r.

Важно! Это очень значимый результат в электротехнике. Передача энергии между источником питания и внешней нагрузкой наиболее эффективна, когда сопротивление нагрузки соответствует внутреннему сопротивлению источника тока.

Если сопротивление нагрузки слишком велико, то ток, протекающий по цепи мал, чтобы передавать энергию на нагрузку с заметной скоростью. Если сопротивление нагрузки слишком низкое, то большая часть выходной энергии рассеивается как тепло внутри самого ИП.

Это условие получило название согласования. Одним из примеров соответствия сопротивления источника и внешней нагрузки является звуковой усилитель и громкоговоритель. Выходной импеданс Zout усилителя задается от 4 до 8 Ом, а номинальный входной импеданс динамика Zin только 8 Ом. Затем, если громкоговоритель 8 Ом будет подключен к выходу усилителя, он будет видеть динамик в качестве нагрузки 8 Ом. Подключение двух громкоговорителей на 8 Ом параллельно друг другу эквивалентно усилителю, работающему на одном громкоговорителе 4 Ом, и обе конфигурации находятся в пределах выходных характеристик усилителя.

КПД источника тока

При совершении работы электрическим током происходят преобразования энергии. Полная работа, совершаемая источником, идет на энергопреобразования во всем электрическом контуре, а полезная – только в присоединенной к ИП цепи.

Количественная оценка КПД источника тока производится по самому значимому показателю, определяющему скорость совершения работы, мощности:

Далеко не вся выходная мощность ИП используется энергопотребителем. Соотношение потребленной энергии и выданной источником представляет собой формулу коэффициента полезного действия:

η = полезная мощность/выходная мощность = Pпол./Рвых.

Важно! Так как Pпол. практически в любом случае меньше, чем Рвых, η не может быть больше 1.

Эту формулу можно преобразовать, подставляя выражения для мощностей:

  1. Выходная мощность источника:

Рвых. = I x E = I² x (R + r) x t;

  1. Потребленная энергия:

Рпол. = I x U = I² x R x t;

  1. Коэффициент:

η = Рпол./Рвых. = (I² x R x t)/(I² x (R + r) x t) = R/(R + r).

То есть у источника тока КПД определяется соотношением сопротивлений: внутреннего и нагрузочного.

Часто показателем КПД оперируют в процентах. Тогда формула примет вид:

η = R/(R + r) x 100%.

Из полученного выражения видно, что при соблюдении условия согласования (R = r) коэффициент η = (R/2 x R) х 100% = 50%. Когда передаваемая энергия наиболее эффективна, КПД самого ИП оказывается равным всего 50%.

Пользуясь этим коэффициентом, оценивают эффективность различных ИП и потребителей электроэнергии.

Примеры значений КПД:

  • газовая турбина – 40%;
  • солнечная батарея – 15-20%;
  • литий-ионный аккумулятор – 89-90%;
  • электронагреватель – приближается к 100%;
  • лампа накаливания – 5-10%;
  • светодиодная лампа – 5-50%;
  • холодильные установки – 20-50%.

Показатели полезной мощности рассчитываются для разных потребителей в зависимости от вида совершаемой работы.

Видео

1.15.1. Работа силы на прямолинейном участке пути.

1.15.2. Работа переменной силы на криволинейном пути. Графическое изображение работы.

1.15.3. Теорема о работе равнодействующей.

1.15.4. Мощность. Коэффициент полезного действия.

1.15.5. Работа и мощность силы, приложенной к твёрдому телу, вращающемуся вокруг неподвижной оси.

1.15.1. Пусть точка М тела, к которой приложена постоянная по модулю и по направлению сила , перемещается прямолинейно из положения М в положение М" (рис. 1.15.1.), причем угол между направлением силы и направлением перемещения точки равен , а путь, проходимый точкой,равен S.

Силу можно разложить на две составляющие: нормальную не совершающую работы, и касательную , модуль которой .

Так как работу совершает только вторая составляю­щая, то работа силы будет равна

Работа постоянной силы при прямолинейном перемеще­нии ее точки приложения равна произведению модуля силы на длину пути, пройденного ее точкой приложения, и на косинус уела между направлением силы и направлением движения ее точки приложения.

Работа силы есть скалярная величина, т. е. вполне определяется ее численным значением и знаком.

Из формулы (1.15.1.) видно, что

1) если , то (силы, направление которых составляет острый угол с направлением дви­жения их точки приложения, совершают положительную работу);

2) если , то (силы, направление которых составляет тупой угол с направлением движения их точки приложения, совершают отрицательную работу);

3) если или , то .

За единицу работы в Международной системе единиц (СИ) принимается работа силы в 1 Н при перемещении ею тела на расстояние в 1 м в направлении действия силы. Эта единица называется джоулем (сокращенно-Дж).

Установленное в механике понятие работы (называемой иногда механической работой) возникло из повседневного опыта. Однако нужно заметить, что оно не всегда совпа­дает с тем, что понимают под работой с физиологической точки зрения. Так, человек, неподвижно держащий тяже­лый груз на вытянутых руках, не совершает, очевидно, никакой механической работы (S=0), в физиологической же точки зрения он совершает, конечно, определенную (при большом весе груза и весьма значительную) работу.

1.15.2. Пользуясь установленным в предыдущем пункте по­нятием работы постоянной силы на прямолинейном пути, перейдем к вычислению работы си­лы в самом общем случае.

Пусть точка приложения М переменной по модулю и по нап­равлению силы перемещается из положения Ав положение В, опи­сывая при этом некоторую криво­линейную траекторию (рис. 1.15.2.). Разобьем путь , пройден­ный точкой, на очень большое чис­ло nстоль малых участков, что без большой погрешности можно счи­тать каждый такой участок пря­молинейным, а силу, действующую на данном участке,- постоянной и по модулю, и по направлению. Обозначим через постоянные для данных участков пути значения модуля переменной силы , через - длины соответствующих (прямоли­нейных) участков пути и через -углы между соответствующими направлениями силы и ско­рости точки ее приложения.


Полная работа Апеременной силы на конечном пути АВ будет, очевидно, равна сумме работ на всех его отдель­ных участках:

Ясно, что чем на большее число участков n мы разобьем путь, пройденный точкой приложения переменной силы , тем точнее вычисляется работа этой силы на данном пути. В пределе, когда число участков nстанет бесконечно большим, длина каждого из них станет бесконечно малой величиной.

Работа силы на бесконечно малом перемещении ее точки приложения называется элементарной работой. Обозначая элементарную работу силы через и длину бесконечно малого элемента пути через dS ,будем иметь

. (1.15.2.)

Тогда работа на всём конечном пути

Работа переменной силы на конечном пути равна интегралу от элементарной работы данной силы, вычислен­ному в пределах изменения пути точки приложения силы.

Сейчас же, заметив, что вычисление данного интеграла во многих случаях представляет значительные трудности, перейдем к более простому и часто применяемому в тех­нике графическому способу вычисления работы перемен­ной силы.

Пусть точка М приложения переменной по модулю и по направлению силы перемещается из положения в положение , которые определяются на ее траектории соответствующими расстояниями и отсчитываемыми от некоторого начала О (рис. 1.15.3.).

Возьмем прямоугольную систему координат (рис. 1.15.3.) и в выбранных масштабах будем откладывать: по оси абсцисс расстояние s точки от начала отсчета, а по оси ординат-соответствующую величину проекции силы на направление скорости точки М ее приложения, т. е. алгеб­раическое значение касательной составляющей данной силы .

Соединяя точки с данными координатами s и F t непре­рывной кривой, получим график зависимости .

Работа силы на ее пути S будет изображаться в соответствующем масштабе площадью фигуры (рис. 1.15.3.), ограниченной осью абсцисс, кривой и двумя ординатами, соответствующими начальному и ко­нечному положению точки приложения силы .

При вычислении работы силы графическим способом нужно, конечно, учитывать масштабы, в которых откла­дывались на графике расстояния s и соответ­ствующие им значения модуля силы F t.

1.15.3. Теорема. Работа равнодействующей нескольких сил на некотором пути равна алгебраической сумме работ составляющих сил на том же пути:

где = - равнодействующая сил .

1.15.4. Мощностью силы называется величина, характеризующая быстроту, с которой этой силой совершается работа в данный момент времени.

Средняя мощность силы за некоторый промежуток времени t равна отношению совершённой ею за это время работы А к данному промежутку времени:

Мощность Р силы в данный момент времени t равна отношению элементарной работы dА силы за бесконечно малый промежуток времени, начинающийся в момент t, к величине dt этого промежутка времени:

В СИ за единицу мощности принимается мощность, при которой работа в 1 джоуль совершается в 1 секунду. Эта единица мощности называется ваттом (сокра­щенно-Вт)

1 Вт=1 Дж/с.

Формуле (1.15.4.) мощности в данный момент можно при­дать другой вид, если подставить в нее установленное ранее [формула (1.15.2.)]выражение элементарной работы:

Мощность силы в данный момент равна произведению соот­ветствующих этому моменту времени модуля данной силы, модуля скорости точки ее приложения и косинуса угла между направлениями силы и скорости точки ее прило-окения.

При работе любой машины часть потребляемой ею мощ­ности тратится не на совершение полезной работы, а на преодоление так называемых вредных сопротивлений, не­избежно возникающих при работе машины. Так, например, мощность, потребляемая токарным станком, тратится не только на совершение полезной работы-снятие стружки, но и на преодоление трения в движущихся частях машин и сопротивления их движению со стороны воздуха.

Отношение полезной мощности Р П машины к потреб­ляемой ею мощности Р или отношение полезной работы за некоторый определенный промежуток времени ко всей затраченной работе А за тот же промежуток вре­мени называется механическим коэффициентом полезного действия.

Обозначая, как это обычно принято, коэффициент по­лезного действия (сокращенно КПД) греческой буквой (эта), будем иметь

КПД является одной из важнейших характеристик машины, показывающей, насколько рационально исполь­зуется потребляемая ею мощность.

Полностью вредные сопротивления никогда не могут быть устранены, и потому КПД всегда меньше единицы.

1.15.5. Пусть в некоторой точке М твердого тела, вращающе­гося вокруг неподвижной оси z (рис. 1.15.4.), приложена сила . Разложим эту силу на две взаимно перпендику­лярные составляющие: , лежащую в плоскости П, пер­пендикулярной к оси z вращения тела, и , перпенди­кулярную к этой плоскости, т. е. параллельную оси z

Мощность Р силы, приложенной к вращающемуся телу, равна произведению вращающего момента этой силы на угловую скорость тела.

Вопросы для самопроверки.

1. Что называется элементарной работой силы?

2. Дайте определение работы силы на конечном отрезке пути.

3. Сформулируйте теорему о работе равнодействубщей системы сил.

4. Как вычисляется работа постоянного вектора силы на прямолинейном отрезке пути?

5. Дайте определение мощности силы.

6. Что называется КПД?

7. Как вычисляется работа и мощность силы, приложенной к телу, имеющему ось вращения?

Известно, что вечный двигатель невозможен. Это связано с тем, что для любого механизма справедливо утверждение: совершённая с помощью этого механизма полная работа (в том числе на нагревание механизма и окружающей среды, на преодоление силы трения) всегда больше полезной работы.

Например, больше половины работы двигателя внутреннего сгорания совершается впустую тратится на нагревание составных частей двигателя; некоторое количество теплоты уносят выхлопные газы.

Часто необходимо оценивать эффективность механизма, целесообразность его использования. Поэтому, чтобы рассчитывать, какая часть от совершённой работы тратится впустую и какая часть с пользой, вводится специальная физическая величина, которая показывает эффективность механизма.

Эта величина называется коэффициентом полезного действия механизма

Коэффициент полезного действия механизма равен отношению полезной работы к полной работе. Очевидно, коэффициент полезного действия всегда меньше единицы. Эту величину часто выражают в процентах. Обычно её обозначают греческой буквой η (читается «эта»). Сокращённо коэффициент полезного действия записывают КПД.

η = (А_полн /А_полезн) * 100 %,

где η КПД, А_полн полная работа, А_полезн полезная работа.

Среди двигателей наибольший коэффициент полезного действия имеет электрический двигатель (до 98 %). Коэффициент полезного действия двигателей внутреннего сгорания 20 % - 40 %, паровой турбины примерно 30 %.

Отметим, что для увеличения коэффициента полезного действия механизма часто стараются уменьшить силу трения. Это можно сделать, используя различные смазки или шарикоподшипники, в которых трение скольжения заменяется трением качения.

Примеры расчета КПД

Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж. Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Решение. Найдём общую массу велосипеда и велосипедиста:

m = 55 кг + 5 кг = 60 кг

Найдем их общий вес:

P = mg = 60 кг * 10 Н/кг = 600 Н

Найдём работу, совершённую на подъём велосипеда и велосипедиста:

Aполезн = РS = 600 Н * 10 м = 6 кДж

Найдём КПД велосипеда:

А_полн /А_полезн * 100 % = 6 кДж / 8 кДж * 100 % = 75 %

Ответ: КПД велосипеда равен 75 %.

Рассмотрим ещё один пример. На конец плеча рычага подвешено тело массой m. К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Найдите, насколько поднялось тело, если коэффициент полезного действия рычага равен η %.

Решение. Найдём работу, совершённую силой F:

η % от этой работы совершено на то, чтобы поднять тело массой m. Следовательно, на поднятие тела затрачено Fhη / 100. Так как вес тела равен mg, тело поднялось на высоту Fhη / 100 / mg.

Иметь представление о мощности при прямолинейном и кри­волинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.

Знать зависимости для определения мощности при поступа­тельном и вращательном движениях, КПД.

Мощность

Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.

Мощность - работа, выполненная в единицу времени:

Единицы измерения мощности: ватты, киловатты,

Мощность при поступательном движении (рис. 16.1)

Учитывая, что S/t = v cp , полу­чим

где F - модуль силы, действующей на тело; v ср - средняя скорость движения тела.

Средняя мощность при поступательном движении равна про­изведению модуля силы на среднюю скорость перемещения и на ко­синус угла между направлениями силы и скорости.

Мощность при вращении (рис. 16.2)

Тело движется по дуге радиуса r из точки М 1 в точку M 2

Работа силы:

где М вр - вращающий момент.

Учитывая, что

Получим

где ω cp - средняя угловая скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость дви­жения меняются, можно определить мощность в любой момент вре­мени, зная значения усилия и скорости в данный момент.

Коэффициент полезного действия

Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы со­вершает еще и дополнительную работу.

Отношение полезной работы к полной работе или полезной мощ­ности ко всей затраченной мощности называется коэффициентом по­лезного действия (КПД):

Полезная работа (мощность) расходуется на движение с задан­ной скоростью и определяется по формулам:

Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.

Чем выше КПД, тем совершеннее машина.

Примеры решения задач

Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.

Решение

1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.

Полезная мощность определяется по формуле

Р = Fv cos α.

В данном случае α = 0; груз движется поступательно.

2. Скорость подъема груза

3. Необходимое усилие равно весу груза (равномерный подъем).

6. Полезная мощность Р = 3000 4 = 12 000 Вт.

7. Полная мощность. затрачиваемая мотором,

Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления во­ды движению судна. КПД машины 0,4.

Решение

1. Определяем полезную мощность, используемую на движение с заданной скоростью:

2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном дви­жении движущая сила равна силе сопротивления воды:

Fдв = Fcопр.

3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с

4. Сила сопротивления воды

Сила сопротивления воды движению судна

Fcопр. = 48 кН

Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощ­ность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.

Решение

1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:

Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Ба­рабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка ра­ботала в течение t = 2 мин. Определить коэффициент по­лезного действия наклонной плоскости.

Решение

Как известно,

где А п.с. - полезная работа; А дв - работа движущих сил.

В рассматриваемом примере полезная работа - работа силы тяжести

Вычислим работу движущих сил, т. е. работу вра­щающего момента на выходном валу лебедки:

Угол поворота барабана лебедки определяется по уравнению равномерного вращения:

Подставив в выражение работы движущих сил число­вые значения вращающего момента М и угла поворота φ , получим:

Коэффициент полезного действия наклонной плоскости составит

Контрольные вопросы и задания

1. Запишите формулы для расчета работы при поступательном и вращательном движениях.

2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.

3. Колодочным тормозом останавливают барабан после отклю­чения двигателя (рис. 16.6). Определите работу торможения за 3 обо­рота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.

4. Натяжение ветвей ременной передачи S 1 = 700 Н, S 2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.

5. Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях.

6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.

7. Определите общий КПД механизма, если при мощности дви­гателя 12,5 кВт и общей силе сопротивления движению 2 кН ско­рость движения 5 м/с.

8. Ответьте на вопросы тестового задания.


Тема 1.14. Динамика. Работа и мощность



Теоретическая механика:
Работа и мощность. Коэффициент полезного действия

Смотрите также решения задач по теме «Работа и мощность» в онлайн решебнике Мещерского .

В этой главе рассмотрены задачи на определение работы, совершаемой постоянной силой, и развиваемой мощности при поступательном и вращательном движении тел (Е. М. Никитин , § 81-87).

§ 44. Работа и мощность при поступательном движении

Работа постоянной силы P на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле
(1) A = Ps cos α,
где α - угол между направлением действия силы и направлением перемещения.

При α = 90°
cos α = cos 90° = 0 и A = 0,
т. е. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то α = 0, поэтому cos α = cos 0 = 1 и формула (1) упрощается:
(1") A = Ps.

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Никитин , § 83):
(2) A R = ∑ A i ,
т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, A R =0. Поэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид
(2") ∑ A i = 0,
т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз - сила тяжести - движущая сила и ее работа положительна, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна.

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу P, а затем по формуле (1) или (1") вычислить ее работу.

2. Не определяя непосредственно силы P, определить A p - работу требуемой силы при помощи формул (2) и (2"), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле
(3) N = A/t или N = (Ps cos α)/t.

Если при определении работы силы Р скорость движения точки v=s/t остается постоянной, то
(3") N = Pv cos α.

Если же скорость движения точки изменяется, то s/t = v ср - средняя скорость и тогда формула (2") выпажает среднюю мощность
N ср = Pv ср cos α.

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ
(4) η = A пол /A,
где A пол - полезная работа; A - вся произведенная работа, или как отношение соответствующих мощностей:
(4") η = N пол /N.

Единицей работы в СИ служит 1 джоуль (Дж) = 1 Н * 1 м.

Единицей мощности в СИ служит 1 ватт (Вт) = 1 Дж / 1 сек.

Популярной внесистемной единицей мощности является лошадиная сила (л. с.):
1000 Вт = 1,36 л. с. или 1 л. с. = 736 Вт.

Для перехода между ваттами и лошадиными силами следует пользоваться формулами
N (кВт) = 1,36 N (л. с.)
N (л. с.) = 0,736 N (кВт).

§ 45. Работа и мощность при вращательном движении

При вращательном движении тела движущим фактором является пара сил. Рассмотрим диск 1, могущий свободно вращаться вокруг оси 2 (рис. 259). Если к точке A на ободе диска приложить силу P (направим ее вдоль касательной к боковой поверхности диска; направленная таким образом сила называется окружным усилием), то диск станет вращаться. Вращение диска обусловлено появлением пары сил. Сила P, действуя на диск, прижимает его в точке O к оси (сила P давл на рис. 259, приложенная к оси 2) и возникает реакция оси (сила P ркц на рис. 259), приложенная так же, как и сила P, к диску. Так как все эти силы численно равны между собой и линии их действия параллельны, то силы P и P ркц образуют пару сил, которая и приводит диск во вращение.

Как известно, вращающее действие пары сил измеряется ее моментом, но момент пары сил равен произведению модуля любой из сил на плечо пары, поэтому вращающий момент
M вр = M пары = M O P = P*OA.

Единицей момента пары сил, а также момента силы относительно точки или относительно оси является 1 Н*м (ньютон-метр) в СИ и 1 кГ*м (килограмм-сила-метр) в системе МКГСС. Но при этом не следует смешивать эти единицы с единицами работы (1 Н*м=1 Дж или 1 кГ*м), имеющими ту же размерность.

Работу при вращательном движении производят пары сил.

Величина работы пары сил измеряется произведением момента пары (вращающего момента) на угол поворота, выраженный в радианах:
(1) A = M вр φ.

Таким образом, чтобы получить единицу работы, например, 1 Дж=1 Н*м, необходимо единицу момента 1 Н*м умножить на 1 рад. Но так как радиан - безразмерная величина
[радиан] = [длина дуги/радиус] = [м/м] = ,
то
[Дж] = [Н*м] * = [Н*м].

Мощность при вращательном движении
(2) N = A/t = M вр φ/t.

Если тело вращается с постоянной угловой скоростью, то, заменив в формуле (2) φ/t = ω, получим
(2") N = M вр ω.

Если мощность того или иного двигателя - величина постоянная, то
(3) M вр = N/ω,
т. е. вращающий момент двигателя обратно пропорционален угловой скорости его вала .

Это означает, что использование мощности двигателя при различных угловых скоростях позволяет изменять создаваемый им вращающий момент. Используя мощность двигателя при малой угловой скорости, можно получить большой вращающий момент.

Так как угловая скорость вращающейся части двигателя (ротора электродвигателя, коленчатого вала двигателя внутреннего сгорания и т. п.) при его работе практически не изменяется, то между двигателем и рабочей машиной устанавливается какой-либо механизм (редуктор, коробка скоростей и т. п.), могущий передавать мощность двигателя при различных угловых скоростях.

Поэтому формула (3), выражающая зависимость вращающего момента от передаваемой мощности и угловой скорости, имеет очень важное значение.

Используя при решении задач эту зависимость, необходимо иметь в виду следующее. Формула (3) применяется для решения задач, если мощность N задана в ваттах, а угловая скорость ω - в рад/сек (размерность ), тогда вращающий момент M вр получится в Н*м.

Читайте также: